Binding of myosin binding protein-C to myosin subfragment S2 affects contractility independent of a tether mechanism.
نویسندگان
چکیده
Mutations in the cardiac myosin binding protein-C gene (cMyBP-C) are among the most prevalent causes of inherited hypertrophic cardiomyopathy. Although most cMyBP-C mutations cause reading frameshifts that are predicted to encode truncated peptides, it is not known if or how expression of these peptides causes disease. One possibility is that because the N-terminus contains a unique binding site for the S2 subfragment of myosin, shortened cMyBP-C peptides could directly affect myosin contraction by binding to S2. To test this hypothesis, we compared the effects of a C1C2 protein containing the myosin S2 binding site on contractile properties in permeabilized myocytes from wild-type and cMyBP-C knockout mice. In wild-type myocytes, the C1C2 protein reversibly increased myofilament Ca2+ sensitivity of tension, but had no effect on resting tension. Identical results were observed in cMyBP-C knockout myocytes where C1C2 increased Ca2+ sensitivity of tension with the half-maximal response elicited at approximately 5 micromol/L C1C2. Maximum force was not affected by C1C2. However, phosphorylation of C1C2 by cAMP-dependent protein kinase reduced its ability to increase Ca2+ sensitivity. These results demonstrate that binding of the C1C2 peptide to S2 alone is sufficient to affect myosin contractile function and suggest that regulated binding of cMyBP-C to myosin S2 by phosphorylation directly influences myofilament Ca2+ sensitivity.
منابع مشابه
Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2.
Myosin binding protein C (MyBP-C) is one of the major sarcomeric proteins involved in the pathophysiology of familial hypertrophic cardiomyopathy (FHC). The cardiac isoform is tris-phosphorylated by cAMP-dependent protein kinase (cAPK) on beta-adrenergic stimulation at a conserved N-terminal domain (MyBP-C motif), suggesting a role in regulating positive inotropy mediated by cAPK. Recent data s...
متن کاملMyosin S2 is not required for effects of myosin binding protein-C on motility.
The unique myosin binding protein-c "motif" near the N-terminus of myosin binding protein-C (MyBP-C) binds myosin S2. Previous studies demonstrated that recombinant proteins containing the motif and flanking regions (e.g., C1C2) affect thin filament movement in motility assays using heavy meromyosin (S1 plus S2) as the molecular motor. To determine if S2 is required for these effects we investi...
متن کاملCrystal structures of human cardiac -myosin II S2- provide insight into the functional role of the S2 subfragment
Myosin II is the major component of the muscle thick filament. It consists of two N-terminal S1 subfragments (‘‘heads’’) connected to a long dimeric coiled-coil rod. The rod is in itself twofold symmetric, but in the filament, the two heads point away from the filament surface and are therefore not equivalent. This breaking of symmetry requires the initial section of the rod, subfragment 2 (S2)...
متن کاملMyosin Binding Protein C Positioned to Play a Key Role in Regulation of Muscle Contraction: Structure and Interactions of Domain C1
Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected...
متن کاملMyosin binding protein C, a potential regulator of cardiac contractility.
The role of myosin binding protein C (MyBP-C) in the formation and function of striated muscle is unclear, even though the demonstration of its presence in the thick filaments of striated muscle was made by Offer et al1 more than 25 years ago.2 Because of the inability of myosin to form normal thick filaments in the absence of MyBP-C and the temporal correlation between the appearance of MyBP-C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 95 9 شماره
صفحات -
تاریخ انتشار 2004